1. A ray of light is incident on the internal boundary of a rectangular glass block in air.

Part of the light refracts out of the block at an angle of 30°.
Some of the remaining light reflects within the block to become incident on the right-hand boundary. refractive index of glass $=1.48$

not to scale

What is the angle of incidence of the ray at the right-hand boundary?

A 20°

B 42°

C 48°

D 70°
2. In a Young's double-slit experiment, monochromatic light is incident on two narrow slits and the resulting interference pattern is observed on a screen.

Which change decreases the fringe separation?

A decreasing the separation between the two slits

B increasing the distance between the slits and the screen \square
C using monochromatic light of higher frequency \square

D using monochromatic light of longer wavelength \square
3. A diffraction grating is illuminated normally.

The second-order maximum for light of wavelength 650 nm occurs at the same angle as the third-order maximum for light of wavelength λ.

What is λ ?

A 217 nm

B 325 nm \bigcirc

C 433 nm

D 975 nm \bigcirc
4. Light of wavelength λ is incident normally on two parallel slits of separation s. Fringes of spacing w are seen on a screen at a distance D from the slits.

Which row gives another arrangement that produces a fringe spacing of w ?

	Wavelength	Slit separation	Distance between slits and screen
A	2λ	$2 s$	$2 D$
B	2λ	$4 s$	$2 D$
C	2λ	$2 s$	$4 D$
D	4λ	$2 s$	$2 D$

(Total 1 mark)
5. A narrow beam of monochromatic light is incident normally to a diffraction grating. The first-order diffracted beam makes an angle of 20° with the normal to the grating.

What is the highest order visible with this grating at this wavelength?

A 2 \square

B 3

C 4

D 5
\bigcirc
(Total
6. The speed of light decreases by 40% when it travels from air into a transparent medium. What is the refractive index of the medium?

A 0.6 \square

B 1.4

C 1.7

D 2.5 \bigcirc
(Total 1 mark)
7. A monochromatic light wave travels from glass into air.

Which row shows what happens to the wavelength, speed and photon energy?

	Wavelength	Speed	Photon energy		
A	increases	increases	increases		
B	does not change	decreases	does not change		
C	does not change	decreases	increases		
D	increases	increases	does not change		
:---:					

(Total 1 mark)
8. Monochromatic light is incident normally on a diffraction grating that has 4.50×10^{5} lines m^{-1}.

The angle between the second-order diffraction maxima is 44°.
What is the wavelength of the light?

A $\quad 208 \mathrm{~nm}$

B $\quad 416 \mathrm{~nm}$

C $\quad 772 \mathrm{~nm}$

D $\quad 832 \mathrm{~nm}$

(Total 1 mark)
9. In a Young's double-slit experiment, the spacing of the double slits is s and the distance between the slits and the screen on which fringes are formed is D. When monochromatic light of wavelength λ is incident on the slits the distance between adjacent fringes on the screen is w. Which row shows another arrangement that produces a fringe spacing of w ?

	Spacing of double slits	Distance between the slits and the screen	Wavelength of the light
A	$4 s$	$2 D$	2λ

(Total 1 mark)
10. Monochromatic electromagnetic radiation of wavelength $5.8 \times 10^{-7} \mathrm{~m}$ is incident normally on a diffraction grating with 3.0×10^{5} lines per metre.

What is the highest order maximum produced?

A 5

B 6

C 10

D 13

(Total 1 mark)
11. Which characteristics of monochromatic light change when the light passes from air into glass?

A Speed, wavelength and frequency.

B Speed and frequency only.

C Speed and wavelength only. \square

D Wavelength and frequency only.
12. Which is a description of the pattern produced when monochromatic light passes through a very narrow slit?

A A series of equally-spaced light and dark fringes.

B A narrow central maximum with wider side fringes.

C A few bright fringes that are widely spaced.

D A wide central maximum with narrower side fringes.
13. A ray of light is incident on a glass-air boundary of a rectangular block as shown.

The refractive index of this glass is 1.5
The refractive index of air is 1.0
The angle of incidence of the light at the first glass-air boundary is 44°
What is the path of the ray of light?

A 0
B 0
C 0
D $\quad \bigcirc$
14. Rays of light are incident at the same angle θ on the core-cladding boundary of optical fibres \mathbf{P} and \mathbf{Q}.
The cores of \mathbf{P} and \mathbf{Q} have the same refractive index n.
\mathbf{P} and \mathbf{Q} are the same length L.
The core diameter of \mathbf{P} is half that of \mathbf{Q}.

The time for the ray to travel along optical fibre \mathbf{P} is

$$
\frac{n L}{c \sin \theta}
$$

where c is the speed of light in a vacuum.
What is the time for the ray to travel along optical fibre \mathbf{Q} ?

A $\frac{n L}{c \sin \theta}$

B $\frac{n L}{2 c \sin \theta}$

C $\frac{2 n L}{c \sin \theta}$

D $\frac{4 n L}{c \sin \theta}$

15. A diffraction grating is illuminated normally with light of wavelength $6.5 \times 10^{-7} \mathrm{~m}$

When a screen is 1.5 m from the grating, the distance between the zero and first-order maxima on the screen is 0.30 m

What is the number of lines per mm of the diffraction grating?

A 3.3×10^{-6}

B 3.3×10^{-3}

C 3.0×10^{2}

D 3.0×10^{5}

(Total 1 mark)
16. In the diagram, \mathbf{P} is the source of a wave of frequency 50 Hz

The wave travels to \mathbf{R} by two routes, $\mathbf{P} \rightarrow \mathbf{Q} \rightarrow \mathbf{R}$ and $\mathbf{P} \rightarrow \mathbf{R}$. The speed of the wave is $30 \mathrm{~m} \mathrm{~s}-1$

What is the path difference between the two waves at \mathbf{R} in terms of the wavelength λ of the waves?

A 4.8λ

B 8.0λ

C 13.3λ

D 20.0λ \square
17. An electromagnetic wave enters a fibre-optic cable from air. On entering the cable, the wave slows down to three-fifths of its original speed.

What is the refractive index of the core of the fibre-optic cable?

A 0.67

B 1.33

C 1.50

D 1.67

(Total 1 mark)
18. A diffraction grating has 500 lines per mm. When monochromatic light is incident normally on the grating the third-order spectral line is formed at an angle of 60° from the normal to the grating.

What is the wavelength of the monochromatic light?

A 220 nm

B 580 nm

C 960 nm

D 1700 nm

19. The diagram shows a ray of light travelling in air and incident on a glass block of refractive index 1.5

What is the angle of refraction in the glass?

A 22.5°

B 23.3°

C 33.1° 0

D 59.4° 0
20. When light of wavelength $5.0 \times 10^{-7} \mathrm{~m}$ is incident normally on a diffraction grating the fourth-order maximum is observed at an angle of 30°.

What is the number of lines per mm on the diffraction grating?
A $\quad 2.5 \times 10^{2}$
0
B $\quad 2.5 \times 10^{5}$
0
C $\quad 1.0 \times 10^{3}$
0
D $\quad 1.0 \times 10^{6}$
0

